
3 The Principle of Mathematical Induction, Peano’s Axioms, and
Inductive Definitions

3.1 The principle of mathematical induction

In this section I recall the principle of mathematical induction by way of several examples. The prin-
ciple of mathematical induction is the technique that allows us to give a mathematical formalization
of an intuitively obvious fact that if in an infinite sequence of statements the first statement is true
and any statement implies the next one, therefore all the statements must be true because the first
one implies the second one, the second one implies the third one, the third one implies the fourth
one, and so on. In some sense mathematical induction is a right tool to remove somewhat vague “and
so on” from mathematical reasonings. It is important not to confuse the principle of mathematical
induction with the general inductive thought process (inductive reasonings), which is frequently de-
scribed as “from particular to general” and which is used in natural sciences (and sometimes even
in mathematics) to provide support for some principles (laws of nature). Strictly speaking inductive
reasonings cannot prove anything, whereas the principle of mathematical induction is a tool for a
rigorous mathematical proof (somewhat probably confusing the principle of mathematical induction
is an example of deductive reasonings).

Now to an informal description of the principle of mathematical induction. Assume that we have
a statement P (n), which we would like to prove (i.e., we would like to make sure that P (n) is true
for all n ≥ k for some given fixed k). To apply the principle of mathematical induction one needs to
check two things: first, the base case P (k). In many cases k = 1 but in general it is possible to start
with any natural number. Second, one needs to prove the induction step P (n) =⇒ P (n + 1) for
any n ≥ k. In words, the induction step is as follows: assuming that P (n) true one concludes that
P (n+1) is also true. (At this point some students get confused: “we need to prove that P (n) is true,
and in the middle of the proof we assume that P (n) is true, isn’t it a logical mistake?” There is no
mistake, since we suppose that P (n) is true to see what will happen in this case, whether P (n + 1)
will be also true, that is the goal of the proof is the truth of the logical statement P (n) ⇒ P (n+ 1),
different from simply P (n).)

Putting the general discussion aside, here are a few examples how the principle of mathematical
induction can be used in proofs. Note that every time one uses the mathematical induction the
final true outcome should be known; that is, while we can use the mathematical induction to prove
something we already know or, more often, conjectured, it is impossible to discover something new by
this technique.

Example 3.1. Recall that triangular numbers can be computed as

tn =
n(n+ 1)

2
, n = 1, 2, . . .

and moreover

1 + 2 + . . .+ n = tn =
n(n+ 1)

2
. (3.1)

Let me prove this formula using the mathematical induction (let’s assume that we checked this formula
for n = 1, 5, 10, 15 but still unsure that it holds for all possible n).
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Base case n = 1. I have (plugging n = 1 into both sides of (3.1))

1 =
1(1 + 1)

2
= 1,

which is true. Hence the base case holds.
Induction step: I suppose that 1 + . . .+ n = n(n+1)

2 and will show that this implies 1 + . . .+ n+

(n+ 1) = (n+1)(n+2)
2 for all n ≥ 1. Indeed,

1 + 2 + . . .+ n+ (n+ 1) =
(
1 + 2 + . . .+ n

)
+ (n+ 1) = [by assumption]

n(n+ 1)

2
+ (n+ 1) =

n(n+ 1) + 2(n+ 1)

2
=

(n+ 1)(n+ 2)

2
,

as required.

Example 3.2 (Bernoulli’s inequality). In this example I will prove

Theorem 3.3. Let x ≥ −1 and n ∈ N. Then

(1 + x)n ≥ 1 + nx.

Proof. Proof by induction.
Base case n = 1:

(1 + x)1 = 1 + x = 1 + 1 · x,

as needed.
Induction step. Assume that (1+ x)n ≥ 1+ nx. I need to show that (1+ x)n+1 ≥ 1+ (n+1)x for

all n ≥ 1. I have

(1 + x)n+1 = (1 + x)n(1 + x) ≥ [by assumption and using the fact that x ≥ −1]

≥ (1 + nx)(1 + x) = 1 + nx+ x+ nx2 ≥ [since nx2 ≥ 0]

≥ 1 + nx+ x = 1 + (n+ 1)x

as required. �

Example 3.4. In this example I will show that it is not necessary to start the induction with n = 1.

Example 3.5 (Strong induction).

3.2 Peano’s axioms of natural numbers

Recall that when we discussed Euclid’s Elements, we agreed that the system of axioms by Euclid,
although an incredible breakthrough for the history of mathematics, is not exactly rigorous according
to the modern mathematical standards. Certainly this is the place to give an example of a system of
axioms that is rigorous. For such an example I picked the so-called Peano’s axioms of natural numbers.
I will not develop the whole theory of natural numbers in detail, and I will not try to be as precise as
possible (this would require a long side trip into the realm of mathematical logic), and yet I will try
to convey the main ideas.
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In what follows I use the usual set theoretic notation such as x ∈ X meaning that x is an element
of set X, and X ⊆ Y meaning that set X is a subset of set Y .

One of main psychological difficulties here is that I plan to talk about the objects such as 1, 2, 3, . . .,
which we deal with since we are 2 or 3 year old, so in many situations it will look somewhat strange
that a very basic fact that we knew for many years to be true requires a proof, and in certain cases
requires, albeit still simple, but at the same time confusing for humans (or at least for me). I would
request the student at this point to concentrate on the ultimate goal: To deduce (and prove!) as
many properties of natural numbers as we know them from as few as possible initial axioms without
assuming that anything is already known.

Definition 3.6. Natural numbers are the elements of a set, which I will denote N, that satisfy the
following five axioms.

A1 : The set N is non-empty and contains an element that I call 1 (“one”).

A2 : For any n ∈ N there is unique natural number n′ ∈ N (I call n′ the successor of n).

A3 : For any n′ ∈ N, n′ ̸= 1 (in words, 1 is not a successor for any natural number).

A4 : If m′ = n′ then m = n (two different natural numbers cannot have the same successor).

Remark 3.7. Some people define natural numbers as N = {0, 1, 2, . . .}, i.e., starting with 0. There
is no real difference with the approach I choose, clearly in this case the special element, which is not
a successor for any other natural number, must be 0.

Axioms A1–A4 define the very basic properties of natural numbers, which we got used to since our
childhood, and yet they are not sufficient for the development of all the properties of natural numbers.
Note that if I consider the following set

{1 → 2 → 3 → 4 → . . .} ∪ {A � B},

where → means exactly that the element on the right is the unique successor of the element at the
left, and hence for the second set B is the successor of A and A at the same time is the successor
of B, then this set satisfies all four axioms listed above. I need something else, which would make
my set of natural numbers minimally possible, which would exclude the behavior I listed above. This
can be done in different ways, but I choose probably the most popular one: I add the the axiom of
mathematical induction:

A5 : If M ⊆ N has the properties

(a) 1 ∈ M ,

(b) If n ∈ M then n′ ∈ M ,

then M = N.

It is actually remarkable that now we can derive and prove all other familiar properties of natural
numbers.
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Remark 3.8. To be absolutely precise no one said that a set with properties A1–A5 exists. So we
either need to postulate the existence of such set (this was Peano’s sixth axiom) or somehow prove
the existence of such set starting with some other axioms (this actually can be done rigorously, but
would take us way too far from the main content of the class). So let us not worry about this issue at
all.

Now I am in a position to define addition of two natural numbers, which will be based on the
following theorem.

Theorem 3.9. For any natural number n ∈ N there exists a unique function fn : N −→ N that
satisfies

(a) fn(1) = n′;

(b) fn(m
′) =

(
fn(m)

)′
.

Definition 3.10. For any two natural numbers n,m ∈ N we define their sum, denoted n+m, as

n+m := fn(m),

where fn specified in Theorem 3.9.

Remark 3.11. Now it could be useful to see that the definition of addition is simply

n+ 1 := n′

and
n+m′ := (n+m)′ = (n+m) + 1,

which is an example of an inductive definition.

Proof of Theorem 3.9.

Uniqueness. My goal here is by fixing an arbitrary n ∈ N and assuming that there exist two
functions that satisfy (a) and (b), i.e.,

fn(1) = n′, fn(m
′) = fn(m)′

and
gn(1) = n′, gn(m

′) = fn(m)′

to show that fn(m) = gn(m) for all m ∈ N, that is, fn = gn. Hopefully not surprisingly I will use
mathematical induction since it is hidden in my goal that I need to check the required equality for all
natural m at the same time, this is exactly what mathematical induction allows me to do.

Let M ⊆ N be the set of such m that fn(m) = gn(m).
Base case: Since fn(1) = 1′ = gn(1) and by A2 the successor is unique, I have 1 ∈ M .
Induction step: I need to show that if m ∈ M then m′ ∈ M , that is, if fn(m) = gn(m) then

fn(m
′) = gn(m

′). Indeed,

fn(m
′) = [by the property (b)] =

=
(
fn(m)

)′
= [by induction assumption] =

=
(
gn(m)

)′
= [by the property (b)] =

= gn(m
′)

4



as required. Hence by A5 M = N and such function, if exists, is unique.
Existence. Now I will show that a function that satisfies (a) and (b) exists (and by the previous

is the only one). Before starting the proof let me try to point out what exactly I need to accomplish
here. In statement of Theorem 3.9 I already inductively defined fn for any fixed n by specifying two
key properties. That is, if n is fixed, then for any m the properties (a) and (b) in the statement of the
theorem are sufficient to compute fn(m). The remaining part I need to check is that it works for all
n at the same time. It is tempting just to say something along the line “by induction our definition is
true for any n and hence we defined our function for all natural n,m, and hence this function exists”
but mathematically this still requires a proof. Which will be accomplished by the induction on n.

First, I define another function for any fixed m ∈ N inductively as

fn(m) =

{
m′, n = 1,

fk′(m) =
(
fk(m)

)′
, n ̸= 1, n = k′.

(3.2)

For the following note that (3.2) implies that fn′(m) =
(
fn(m)

)′
. I will show below that such defined

function coincides with the function given in the statement of the theorem, and this is why I used the
same notation for it. Now to the actual proof.

Let N ⊆ N be the set of those natural numbers n for which function (3.2) satisfies (a) and (b). I
claim that 1 ∈ N . Indeed, for n = 1 and m = 1 definition (3.2) implies that

f1(1) = 1′,

which coincides with property (a) for n = 1. For n = 1 and m ̸= 1 definition (3.2) yields (I use twice
(3.2) for n = 1)

f1(m
′) = (m′)′ =

(
f1(m)

)′
,

which is Property (b) for n = 1. Base case is done.
Now I need to show that n ∈ N =⇒ n′ ∈ N . I start with the case m = 1:

fn′(1) = [by (3.2)] =
(
fn(1)

)′
= [by induction assumption] = (n′)′,

which finishes proving property (a).
Similarly,

fn′(m′) = [by definition (3.2)] =

=
(
fn(m

′)
)′
= [by induction assumption] =

=
((

fn(m)
)′)′

= [by (3.2)] =

=
(
fn′(m)

)′
,

as required. Hence by A5 N = N, which concludes the proof. �

I actually proved a little bit more. Indeed, now using the standard notation “+” for addition, I
have

Corollary 3.12. For any m ∈ N
m+ 1 = 1 +m.
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Proof. By Theorem 3.9 and definition of addition

m+ 1 = [by definition] = fm(1) = (a) = m′ = (3.20) = f1(m) = by defintion = 1 +m.

�

Moreover, by agreeing that 2 = 1′ (i.e., we denote by 2 the successor of 1), 3 = 2′ = 1′′, 4 = 3′ =
2′′ = 1′′′ (here I use shorter notation, e.g., 1′′ for the successor of the successor of 1, etc.) we can prove
the fundamental

Theorem 3.13.
2 + 2 = 4.

Proof.
2 + 2 = 1′ + 1′ = (1′ + 1)′ =

(
(1 + 1)′

)′
= ((1′)′)′ = 1′′′ = 4

as required. �

Note that here I used n′ + m = (n + m)′ = (n + m) + 1 in addition to the discussed earlier
n+m′ = (n+m)′ = (n+m) + 1.

Before moving forward with other properties of addition let me show that the axiom of math-
ematical induction A5 is equivalent to the principle of mathematical induction that I discussed in
Section 3.1. I delayed this discussion to this point because, technically speaking, I did not know what
n+ 1 means up till now.

Theorem 3.14. Axiom A5 is equivalent to the principle of mathematical induction as stated in Sec-
tion 3.1.

Proof. Assume first the principle of mathematical induction holds, i.e., for some statement P (n) we
know that P (1) holds, and P (n) =⇒ P (n+ 1) (we now finally know what n+ 1 means!), and hence
we know that P (n) is true for any natural n. Consider the set M = {n : P (n) is true}. Clearly, I have
that 1 ∈ M , n ∈ M =⇒ n′ ∈ M , and M = N, which is exactly axiom A5. In the opposite direction,
assume A5 and consider the statement P (n) =“natural number n belongs to the set M .” We have
that, assuming A5, that two true statements P (1) and P (n) =⇒ P (n+ 1) imply that P (n) for any
natural n, and hence done. �

Remark 3.15. Do not get confused by the proof above. We showed nothing else other than our
ability to rewrite the same principle either in the language of the sets (axiom A5) or in the language
of logic (the principle of mathematical induction).

After we defined the addition, the properties of this operations becomes theorems. Here is an
example.

Theorem 3.16. For any k,m, n ∈ N the addition is associative:

(k +m) + n = k + (m+ n).
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Proof. Proof by induction on n.
Fix k,m ∈ N and let N be the set of those natural numbers n for which the associative property

holds. First, 1 ∈ N since

(k +m) + 1 = (k +m)′ = k +m′ = k + (m+ 1).

Now assume that n ∈ N and consider

(k +m) + n′ = ((k +m) + n)′ = [since n ∈ N ] = (k + (m+ n))′ = k + (m+ n)′ = k + (m+ n′)

as required. �

Exercise 1. Use induction to show that the addition commutative, i.e.,

m+ n = n+m

for any m,n ∈ N.

Before moving forward, let me state the following theorem (and another inductive definition).

Theorem 3.17. For any fixed n ∈ N there exists a unique function gn : N −→ N that satisfies for all
m ∈ N the following two properties:

(a) gn(1) = n.

(b) gn(m
′) = gn(m) + n.

This function is called the multiplication of two natural numbers n,m and denoted n×m or n ·m
or simply nm.

This operation of multiplication is distributive with respect to addition, i.e.,

k(m+ n) = km+ kn,

and
(k +m)n = kn+mn,

associative, i.e.,
(km)n = k(mn),

and commutative, i.e.,
nm = mn,

for all k,m, n ∈ N.

Exercise 2. Prove this theorem. Hint: Prove the properties in the order given in the theorem
statement.

Now we have two arithmetic operations “+” and “×” and showed that all the basic properties of
these operations that we so got used to during the school years are the consequences of five axioms.
Is it all about the natural numbers? Not really, since using addition I can introduce an order on the
set of natural numbers. From a theoretical point of view an order is a relation on a set (i.e., a subset
of Cartesian product N×N) but to keep thing as simple as possible I just say
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Definition 3.18. We say that m ≤ n if either m = n or there is k ∈ N such that m+ k = n.

Defined in this way order is a linear or total order on N, i.e., for any n,m ∈ N it is either m ≤ n
or m ≥ n, moreover, by this definition n ≤ n + 1 as our experience tells us. Strictly speaking it it
necessary to prove that such order exists and actually is unique, but I will skip these proofs (it is quite
a lengthy process but no more difficult than the proofs given above).

Since I have an order, I can look at a set version of the strong mathematical induction (recall
the discussion from the previous section). If the student is comfortable with the material covered so
far, it should be of no surprize that in the language of sets the principle of the strong mathematical
induction takes the form

A5′ : If S ⊆ N has the properties

(a) 1 ∈ S,

(b) If {k : k ≤ n} ⊆ S, then n+ 1 ∈ S,

then S = N.

It looks likes it is a stronger version compared to A5, but in reality they are equivalent. I will show
that A5 implies A5′ and will leave formalization of the opposite (intuitively almost obvious) direction
to the reader.

Proposition 3.19. A5 ⇒ A5′.

Proof. Assume A5 holds and that 1 ∈ S and {k : k ≤ n} ⊆ S ⇒ n + 1 ∈ S. I need to show that
S = N.

Construct a new set M such that n ∈ M ⇔ {k : k ≤ n} ⊆ S. Clearly M ⊆ S. Moreover
1 ∈ M since {1} ⊆ S, and n ∈ M ⇒ n + 1 ∈ M since by assumption both {k : k ≤ n} and
{k : k ≤ n+ 1} = {k : k ≤ n} ∪ {n+ 1} are subsets of S. Therefore, by A5 M = N, i.e., N ⊆ S ⊆ N
and hence S = N as required. �

My final key point in the discussion of natural numbers will be an explanation when one can use
the principle of mathematical induction. Specifically, I will prove

Theorem 3.20. Let N be the set that satisfies A1–A4, and let “≤” be the total order on N for
which n ≤ n+1. Then axiom A5′ is equivalent to the well-ordering principle, i.e., to the fact that each
nonempty subset of N has the minimal element. And therefore the well ordering principle is equivalent
to the axiom of mathematical induction A5.

Remark 3.21. Theorem 3.20 tells us a very important thing: It specifies for which sets one can use
mathematical induction. Namely, if on a given set there is an order such that well-ordering principle
holds then we can use induction. Interestingly, there is a way to introduce an order for any set such
that well-ordering principle will be true; that is in principle the mathematical induction can be used
on any set (if you became curious at this point, read about transfinite induction).

Proof of Theorem 3.20.

⇒ (axiom A5′ implies the well-ordering principle) Proof by contradiction. Looking for a contra-
diction, assume that we have set B ⊆ N, B ̸= ∅ and B has no minimal element. Let M = N \B, i.e.,
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the complement of B. We know that 1 ∈ M since otherwise B would have the smallest element. Let
{k : k ≤ n} ⊆ M , then n+1 ∈ M because otherwise n+1 ∈ B would be the smallest element. Axiom
A5′ now implies that M = N or B = ∅, which is a contradiction.

⇐ (well-ordering principle implies axiom A5′) Let M be a set such that 1 ∈ M and {k : k ≤ n} ⊆
M ⇒ n + 1 ∈ M . The goal is to show that M = N. Looking for a contradiction, assume that
B = N \M ̸= ∅. Let n ∈ B be its least element which exists by the well-ordering principle. Then by
Peano’s axioms, n = m + 1 for some m ∈ N. By our assumption {k : k ≤ m} ⇒ m + 1 ∈ M , hence
n = m+ 1 cannot be in B, which is a contradiction. �

3.3 Integers, Rational, and Reals

Having at our disposal all the properties of natural numbers (addition, multiplication, and total order
with the usual familiar from school properties) it is possible to construct all number sets we also deal
with at school. I am not going to do it here, and will jump very fast from integers, to rational, to real
numbers (saving the complex numbers for the next part of the course) emphasizing the key properties
without much discussion. The only reason is that our time is limited, and it would be somewhat
boring to spend the rest of the semester discussing precise constructions. For the interested student I
will give a few literature references at the end of the next section.

So, let us start.

Definition 3.22. The set of integers, which is usually denoted as Z or Z is, by the definition the
union of three sets:

Z = N ∪ {0} ∪ {−k : k ∈ N}.

That is, to define the integers, I take the already defined set N, add to it a special element that
I call zero, and also add another copy of the set N, now denoting all the elements with sign minus,
to distinguish them from the first copy of N. I also require that the following properties hold for the
arbitrary x, y, z elements of Z:

(x+ y) + z = x+ (y + z) (associativity of addition)

x+ y = y + x (commutativity of addition)

x+ 0 = 0 + x = x (neutral element of addition)

x+ (−x) = 0 (existence of inverses with respect to addition)

(xy)z = x(yz) (associativity of multiplication)

xy = yz (commutativity of multiplication)

1x = x1 = x (neutral element of multiplication)

x(y + z) = xy + xz (distributivity of multiplication w.r.t. addition)

(3.3)

If the student already has taken a class in abstract algebra, they should recognize that the set of
integers Z forms an algebraic structure that is called ring (to be more precise, commutative ring since
the operation of multiplication is commutative).

Moreover, set Z inherits the order from N. That is, there is a total or linear order on the elements
of Z (recall that this means that for any x, y ∈ Z either x ≤ y or y ≤ x) which satisfies two properties

x ≤ y ⇒ x+ z ≤ y + z,

0 ≤ x, 0 ≤ y ⇒ 0 ≤ xy.
(3.4)
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With these two order properties Z becomes an ordered ring.

Remark 3.23. I would like to emphasize that all the properties (3.3) and (3.4) can be made into
theorems if a somewhat more precise definition of Z is used. None of this is postulated, all which is
used is the axioms and already proved properties of N together with a new definition.

Remark 3.24. The properties of the set of integers allow us to give one possible answer to the
question “why negative times positive is negative?” (or related question “why negative times negative
is positive?”). Namely, we must have these rules to keep that structure of the ring intact (again, in
any commutative ring properties (3.3) must be true). For instance, we know that 5 · 5 = 25 from the
properties of natural numbers. Now we have that 5 = 7 + (−2). Therefore, one should have

25 = 5 · 5 = 5(7 + (−2)) = 5 · 7 + 5 · (−2) = 35 + 5 · (−2),

which will be true only if 5 · (−2) = −(5 · 2).
I stress that such “an explanation” is not appropriate at a school level, where some analogies with

either movement (forward is positive direction and backward is negative direction) or lending and
borrowing money are certainly more appropriate.

With rational numbers I would like to be more careful. So first I would like to recall an equivalence
relation on a set X.

A Cartesian product of two sets X and Y is a set of all ordered pairs (x, y), i.e., X × Y =
{(x, y) : x ∈ X, y ∈ Y }. A relation R on a set X is by definition a subset of X×X. Finally, a relation
R called an equivalence relation on set X if

(x, x) ∈ R (reflexivity)

(x, y) ∈ R ⇒ (y, x) ∈ R (symmetry)

(x, y) ∈ R, (y, z) ∈ R ⇒ (x, z) ∈ R (transitivity)

Instead of writing (x, y) ∈ R it is more convenient and suggestive to use the notation x ∼ y, which
I will be doing from now on. Examples of equivalence relation include “is congruent to,” “in similar
to” on the set of all triangles, “have the same birthday” on the set of all people, etc.

The utility of equivalence relation is the fact that it allows to give classification on the given set
X, i.e., it allows to divide into mutually exclusive nonempty subset whose union gives the whole set.

Let me denote [x] the set of all elements y of X that satisfy x ∼ y, mathematically [x] = {y ∈
X : x ∼ y}. This set is called equivalence class with representative x. Using this notation I state

Lemma 3.25. Let x, y ∈ X. If [x] ∩ [y] ̸= ∅ then [x] = [y].

Proof. Let z ∈ [x] ∩ [y]. This implies that z ∼ x and z ∼ y, therefore, by symmetry and transitivity
x ∼ y, that is for any a ∼ y x ∼ a and for any b ∼ x y ∼ b, as required. �

Finally the definition of the set of rational numbers Q.

Definition 3.26. Let X = Z × N. By definition the set of rational numbers Q is the set of all
equivalence classes on X with the equivalence relation

(a, b) ∼ (c, d) ⇐⇒ ad = bc.
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Remark 3.27. If the definition above seems to be confusing think about pairs (a, b) and (c, d) as
ratios a/b and c/d.

Remark 3.28. To practice your understanding of the given definition, consider a different definition
of set Z. Let X = N×N. Then set Z is the set of all equivalence classes on X with the equivalence
relation (a, b) ∼ (c, d) if and only if a+ d = b+ c. Maybe you can try to use this definition to derive
all the properties in (3.3) and (3.4)?

Exercise 3. Check that the defined relation is indeed an equivalence relation on X.

Set Q is an example of algebraic structure called field. To list all the axioms of a field I need to
take all the axioms of a ring in (3.4) and add just one more thing: For any nonzero x ∈ Q there exists
its multiplicative inverse y such that xy = yx = 1. This inverse is usually denoted x−1. It can be also
checked that Q is an ordered field, i.e., it satisfies (3.4).

So far so good, but here comes the main question. Recalling the school years and other mathematics
classes, it should be clear that the set of real numbers R is also an ordered field in exactly the same
way as Q is. And yet there must be a difference because we already know that there are real numbers,
which are not in Q. The difference lies in the so-called completeness axiom.

Definition 3.29. The set of real numbers, denoted R, is an ordered field for which the completeness
axiom holds: if A,B ̸= ∅ are subsets of R and A ≤ B meaning that for any a ∈ A and b ∈ B we have
a ≤ b then there is c ∈ R which divides A and B, i.e., a ≤ c ≤ b for all a ∈ A and b ∈ B.

First let me show that Q does not satisfy the completeness axiom.

Theorem 3.30. Let A = {a ∈ Q : a2 < 2, a > 0} and B = {b ∈ Q : b2 > 2, b > 0} be two subsets of
Q. Then there is no rational c ∈ Q that divides A and B.

Proof. By contradiction. Assume that there is such c ∈ Q. Then three cases are possible:

(i) c2 = 2,

(ii) c2 < 2,

(iii) c2 > 2.

Consider one by one. Case (i) is not possible because as we already know there is no rational c that
satisfies c2 = 2.

For case (ii), assume that c2 < 2 has been found as required. The idea is to find an ε ∈ Q, ε > 0
for which (c+ ε)2 < 2 and hence (c+ ε) ∈ A thus reaching the contradiction that c divides A and B.
Indeed, simplifying,

(c+ ε)2 < 2 ⇔
c2 + 2cε+ ε2 < 2 ⇔

2cε+ ε2 < 2− c2

Since 2cε+ ε2 = ε(2c+ ε) < ε(2c+ 1) for small ε, if I find ε that satisfies

ε(2c+ 1) < 2− c2
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then I am done. I can take, e.g.,

ε =
2− c2

k(2c+ 1)
,

where k > 1 is any rational number that also guarantees that ε < 1, which concludes the proof of case
(ii), since c+ ε ∈ A and clearly c+ ε > c.

Case (iii) is left as an exercise. �

Note that if we accept the axiom of completeness of set R then we get (think this out!)

Corollary 3.31. In R for the sets A,B defined in the previous theorem the number that divides A
and B is c =

√
2.

So, does it mean that we have to add something to our list of axioms to actually build R? The
answer is no (in some situations, however, not to work sequentially through N,Z,Q, the list of axioms
of R is given at the beginning, which saves a lot of time). With a proper definition the set R can
be constructed from Q such that the axiom of completeness becomes a theorem. This, however, will
require much more mathematical sophistication compared to constructions of Z out of N or Q out of
Z and N, and will be skipped here (the details can be found in the literature at the end of the next
section).

To finish this section I would like to mention that there are quite a few statements equivalent to
the axiom of completeness. For instance, it is equivalent to the statement, which you might have
seen in Calculus I, that any nondecreasing bounded sequence of real numbers has a limit (converges).
Another equivalent statement is the intermediate value theorem, which states that any continuous
function that takes negative and positive values on a given interval must have a zero in this interval
(this is not true for continuous functions on Q, which makes it impossible to have analysis on Q similar
to the one we have on R).
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